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• 2 corresponding authors: 
Prof. Joshi and Dr. Majula-
Basavanna, Research 
Scientist at MIT

• Anna Duraj-Thatte, Assistant 
Professor at Virginia 
Polytechnic

• No students?

Avinash Manjula Basavanna
Anna Duraj-Thatte
Neel Joshi

https://livingmaterialsengineer.com/
https://www.bse.vt.edu/people/faculty/anna-duraj-thatte.html
https://cos.northeastern.edu/people/neel-joshi/
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• A new ELM called MECHS 
(Mechanically Engineered 
Living Material with 
Compostability, Healability, 
and Scalability)

• Plastic/paper like (those are 
different, right?)

• Curli protein nanofibers

• Genetically encoded covalent 
crosslinking for improved 
tensile properties

• Suggested as a primary 
packaging material
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 Protein nanofibers produced by 
some bacteria, like E. coli, as main 
protein part of biofilm

 4-7 nm in diameter, highly entangled 
networks

 Curli are formed by the extracellular 
self-assembly of CsgA, a small 
secreted 13 kDa protein

 A type of amyloid fiber

OK, what’s a curli fiber?
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https://doi.org/10.1038/ncomms5945

1 µm scale bars
(f) E. coli variant with no nanofiber (no CsgA)
(g) E. coli variant with nanofibers (wild type CsgA)
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Crystallographic structure of the 
enterobacteria Curli protein structures

https://en.wikipedia.org/wiki/Curli
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• β-sheets are 
perpendicular to the 
fibril axis

• H-bonds between β-
sheets run parallel 
to fibril axis 

• Cross β-sheet 
structure contributes 
to high strength and 
stability



 “Ideal platform” for materials engineering: Why?

 Programmability – composed from the self-assembly of one protein, 
providing an entry point to genetic engineering

 Robust –withstands harsh environments – heat, solvents, pH, 
detergents, denaturants, high strength 

 Abundant – up to 10-40% of biofilm

Why Curli nanofibers?
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https://doi.org/10.1038/ncomms5945
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https://doi.org/10.1038/ncomms5945

Previous work: Curli nanofibers



Biofilm-Integrated Nanofiber 
Display (BIND) system 
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https://doi.org/10.1038/ncomms5945

• DcsgA cells express and 
secrete the fusion protein

• Fusion protein consist of the 
CsgA (orange) and the 
functional peptide domain 
(green)

• Secreted fusion protein self-
assembles on cell surfaces, 
making up a biofilm, that is 
programmed with non-natural 
functions



Previous work: “AquaPlastic”
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https://doi.org/10.1038/s41589-021-00773-y

• Same 2 lead authors
• Swiss contribution
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https://doi.org/10.1038/s41589-021-00773-y



 AquaPlastic is composed is recombinant protein nanofibers produced by 
E. Coli
 Young’s modulus ca. 1 GPa and ultinmate tensile strength ca. 25 MPa
 Resistant to chemicals (acid, base, organic solvents)
 Coatable
 But:
 Brittle and not scalable
 To address: MECHS combines “whole cellular biomass and engineered 

extracellular matrix protein nanofibers that enables tuning of their 
mechanical properties”

MECHS to address 
AquaPlastic shortcomings
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 2 main ingredients: whole E. coli cells + engineered recombinant curli 
nanofibers
 Use PQN4 in which chromosomal curli genes (csgBAC, csg DEFG) 

have been deleted
 PQN4 was transformed with pET21d plasmid vector encoding a 

synthetic curli operon, csgBACEFG, containing all genes needed for 
CsgA production, secretion, and extracellular assembly (not new in this 
work)

Biofrabrication of 
MECHS
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Gene transcription 
recap from 1st week
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DNA part:

• Promoter: binding site for RNA 
polymerase

• Operator: sequence where repressor 
proteins can bind

• Structural genes: genes that will be 
transcribed and translated



Gene transcription 
recap from 1st week
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Protein part:

• Repressor (LacI) binds to operator to 
prevent transcription

• RNA polymerase: enzyme that 
transcribes DNA in to RNA, binds to 
promoter



Gene transcription 
recap from 1st week
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Inducer

• Lactose/IPTG – molecule that binds 
to the repressor (LacI) changing its 
shape



Gene transcription 
recap from 1st week
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Repressed state

• LacI repressor is bound to operator
• This prevents RNA polymerase from 

binding to the promoter and 
transcribing the genes

• No gene expression occurs



Gene transcription 
recap from 1st week
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Induction

• IPTG or lactose  enters cell and 
binds to repressor (LacI)

• Shape change in repressor causes it 
to release from operator



Gene transcription 
recap from 1st week
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Transcription

• RNA polymerase can now bind to the  
promoter and start gene 
transcription, producing mRNA



Gene transcription 
recap from 1st week
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Translation

• mRNA is bound by ribosomes and 
translated into proteins (in nature: 
enzymes for lactose metabolism)

Summary: Inducers turn gene 
expression on/off

“ON” switch = lactose or IPTG
“OFF switch = no lactose or IPTG



Biofabrication of MECHS
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• Curli genes are place under the control of the lac promoter (pLac), which is regulated 
by IPTG and lac repressor (LacI)

• Without IPTG, LacI binds to the lac operator, repressing curli gene expression

• With IPTG, LacI is released from operator, allowing transcription of curli genes 
(induce curli gene expression on demand)



Biofabrication of 
MECHS – SI section
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Brittle MECHS (SDS gelator)
• 48h culture
• Centrifuge to pelletize curli biomass
• Wash with water
• “Gelation” – 1 g (wet) + 5 ml water + 5 ml 

SDS (1,2,3, 4, or 5% w/v)
• Shake for 2h at RT
• Wash with water by centrifugation to 

remove “biomolecules” and excess SDS
• Cast on silicone molds

Flexible MECHS (glycerol plasticizer)
• 3% SDS treated biomass + 5 ml glycerol (1, 

2, 3, 4, or 5% w/v)
• Shake for 1 h at RT
• Centrifuge to wash
• Cast on silicone molds

Note: Casting directly from whole biomass without filtration763 or extensive washing
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Genetic constructs
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Effect of plasticizer on curli biomass (no 
crosslinking – CsgA)
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More genetic engineering to further tailor 
mechanical properties (based on BIND)
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“genetically grafting to CsgA via a linker to obtain CsgA-SpyTag and CsgA-SpyCatcher”
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• 2019 PNAS paper
• Unbreakable protein-

protein interactions
• Genetically encoded 

peptide that reacts with a 
genetically encoded 
protein partner

https://doi.org/10.1073/
pnas.1909653116



SpyTag/Spy Catcher
 Spontaneous reaction between  lysine in SpyCatcher and aspartic acid 

in SpyTag to give an isopeptide bond
 Does not require activating groups
 Highly specific even in complex biological media
 Two CsgA constructs (CsgA-SpyTag & CsgA-Spycatcher) were 

expressed from separate plasmids in co-culture and the resulting curli 
biomass was used to make MECHS films, called CL1
 Analogous experiments with a large spacer (disordered protein domain 

of 225 amino acids, called CL2 – why do you think they tried this 
experiment?

More genetic engineering to further tailor 
mechanical properties (based on BIND and 
SpyTag/SpyCatcher)
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Mechanical properties of crosslinked curli biomass, 
with (CL2) and without a spacer (CL1), 3% 
plasticizer

M
SE

 4
93

31

• Crosslinked films are stiffer
• Spacer does not seem to add much 
• Speculate that an even bigger spacer might reduce the stiffness and enhance extensibility



Congo red assay
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• Dye can be used to detect amyloids
• Align parallel to β-sheet axis
• Upon binding, absorbance shifts from 490 nm to 540 nm
• Not entirely specific to amyloids



Compositional analysis
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• Calibration curve with Congo Red and purified curli 
nanofibers

• Curli from 500 ml cultures: CsgA = 530 mg; CL1 = 431 
mg; CL2 = 399 mg (calculated from Fig 3g absorbance 
and calibration curve, plotted in Fig 3h)

• Wet weight of whole cell pellets: CsgA = 2647 mg; CL1 = 
2483 mg; CL2 = 2490 mg (Fig 3g) 

• % curli nanofibers in wet whole cell pellets, 15-20% (Fig 
3h)

• If you subtract wet pellet mass between curli-producing 
and sham construct (1936 mg), roughly get the mass of 
curli nanofibers from each curli-producing construct 
(coincidence?)



Morphological analysis (FESEM)
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• Scale bar is 1 µm
• Top: cell cultures
• Middle: Top surface 

MECHS
• Bottom: Cross-section 

MECHS
• CL1 and CL2 look like 

“aggregated mats” –
“presumably due to 
nanofiber 
bundling…covalent 
crosslinking”

• Cross-sections show 
dense packing



Compostability
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• MECHS (top) vs. toilet paper (bottom) in  fresh  (a) or dry (b) “fishnure”
• 5 cm by 5 cm samples



Compostability
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• Normalized biodegradation 
weight loss (%) after 75 days



Flushability
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MECHS Toilet paper

PVA-Mc PVA-Sp

• MECHS do not dissolve 
completely – “likely due to 
network of hydrophobic curli 
nanofibers”

• PVA-Sp dissolves fully

• Is this flushable or not?



Biofertilizer to support plant growth?
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• MECHS are made of protein, therefore 
have a significant nitrogen content

• Photograph of black bean seedling grown 
in soil consisting of fishnure and MECHS

• Convincing?



Weldable? Healable?
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• Welded together by using microliters of 
water followed by ambient drying

• Convincing?



Prototypes and the mechanical landscape
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 Compared to AquaPlastic, MECHS are tunable (maybe someone can 
present AquaPlastic in poster?)

 MECHS properties:
• 1-160% elongation at break, Young’s modulus 6-450 MPa (paper/plastic like)
• Transparent 
• Higher yield (increased by a factor of 10) by using whole cells, 500-1000 mg 

compared to 50-100 mg for AquaPlastic
• SDS “gelator” coupled with glycerol plasticizer can reduce brittleness (how 

does SDS act as a gelator?)
• Processed by fancy words like “aquamolding”, “aquahealing”, “aquawelding” 

(what do you think?)
• Plastic/paper like properties (ok…)

Conclusions
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Did you like this paper? 
Why or why not?
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 An even better idea of ELMs 

 An example of how you can use recombinant protein engineering to 
change mechanical properties (at least in theory)

 How to contextualize a new material in terms of existing materials 
(important but not straightforward)

Lesson takeaways
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